2018 SEVINOMICS Spring Meeting

Genome adaptations to high altitude in the Eastern Honey bee

9 April 2018

Santiago Montero-Mendieta

What is adaptation?

 A feature of an organism that has been favored by *natural selection* because of that feature's positive effect on relative fitness

What is *local* adaptation?

 Evolution, through *divergent* natural selection, of traits that have high fitness in the environmental conditions specific to a population

> These adaptations are local because they are NOT found throughout the whole species, only in certain populations

E.g. Local adaptation to high altitude habitats

Local adaptation to altitude

Human populations in Tibet have adapted to survive at extremely high altitudes (>2500m)

Genes involved in decreased hemoglobin levels: EPAS1, EGLN1, PPARA

Yi et al. (2010). Science

Local adaptation to altitude

Octopamine receptor genes: learning and foraging behavior in honeybees

Kenyan honeybees inhabiting mountain forests differ in *behavior and morphology* from those found in the surrounding lowland savannahs

Wallberg et al. (2017) PLOS Genetics

Social behavior in bees can change with altitude

Social Sweat Bee (Halictus rubicundus) has solitary behavior in high-altitude habitats

Bees are crucial as pollinators

Distribution of *Apis mellifera*

Distribution of Apis cerana

Aims of the study

Understanding the genetic structure of these populations

 Identifying regions of the genome associated with adaptation to high altitude habitats

Experimental procedure

- Reads were mapped against the *Apis cerana* reference genome
- **5.8 million biallelic SNPs** were detected using FreeBayes
- We did a series of population genomic analyses: ADXMITURE, FST scans, genetic diversity, environmental association, haplotype homozygosity

Results

Genetic distance across eight populations Japan of *Apis cerana*

Genetic differentiation

Population structure

ADMIXTURE

Alexander *et al.* (2009) Genome Research

sNMF

Frichot *et al.* (2014) Genetics

HIGHLAND vs LOWLAND

Highland vs Lowland

Highly differentiated SNPs are not common between highland and lowland bees

Highly differentiated SNPs are more frequently located in UTRs and CDS

Highly differentiated SNPs found in CDS often cause nonsynonymous mutations

XP-EHH scores increase at high F_{ST} regions, implying haplotype homozygosity on highland bees

Selective sweeps in highland bees occur on a restricted set of genes

Genes involved on high altitude adaptation in *Apis cerana*

Sweep	# SNPs	Scaffold	Gene annotation
В	27	0015	esterase FE4-like
F	17	0041	leucokinin receptor
J	22	1417	NMDA receptor
			•••

- Development
- Reproduction
- Courtship behavior

- Feeding and sucrose responses
- Affect blood pressure
- Enhance memory retention
- Disturb circadian rhythmicity

- Olfactory learning
- Memory formation

SUMMARY

- 1. Several *extremely differentiated* genomic regions between highland and lowland bees
- 2. These regions are *biased towards coding sequences* and contain a higher proportion of non-synonymous mutations
- 3. These regions show high haplotype homozygosity in the highland bees, indicating *selective sweeps* in them
- 4. Genes associated with these regions have diverse functionality further investigation is required !

Thank you!

